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Our adventure into the world of “designer decimals” began when the second author came
across a curiosity on page 16 of Roberts’ Elementary Number Theory [7], namely, 10000/9899 =
1.01020305081321345590 . . . . He noticed that the difference between the numerator and de-
nominator was 101. Inspired by this, he decided to try computing the decimal expansions of
the fractions 100/89 and 1000000/998999 (the differences between numerator and denomi-
nator are 11 and 1001) and discovered a surprising result: both expansions begin with terms
of the Fibonacci sequence! Tom Osler and the second author [9] went on to prove using gen-
erating functions that this class of fractions always produces decimal expansions containing
terms of the Fibonacci sequence. Soon after, Bicknell-Johnson [1] found a more general class
of fractions that give decimal expansions containing the initial terms of a sequence {an}∞n=0

satisfying the recurrence relation

an = pan−1 + qan−2, (1)

where p and q are integers. Fractions that generate the Fibonacci and Fibonacci-like se-
quences (sequences that satisfy recurrence (1) with p = q = 1, such as the Lucas numbers)
have been studied by other authors as well; see, for example, [4], [5], and [6]. Bicknell-
Johnson [2] also studied fractions where the Fibonacci sequence appears from right to left
in the decimal expansion.

In the course of his investigations, the second author also found another curious fraction:
10000/9801. Note that the difference between the numerator and denominator here is 199.
Similarly, the fractions 100/81 and 1000000/998001, corresponding to differences of 19 and
1999, are “designer decimals” as well. In this paper, we provide an arithmetical approach to
find the properties of the fraction 10000/9801 and its relatives, without the use of generating
functions. We also give other designer decimals that produce integer sequences which do not
satisfy recurrence (1), and prove an interesting result on the remainders of these designer
decimals when one performs division on them.

The Fraction
10000

9801
and its Generalizations

The decimal expansion of the fraction 10000
9801

begins 1.0203040506 . . . . A few questions arise
naturally to the inquisitive reader: “Do all the integers from 1 to 99 occur in sequence?” “Since
we have a fraction, the decimal expansion must repeat. What is the length and nature of
the repeating part?” In this section, we answer both of these questions.
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The key to unraveling the fraction 10000
9801

is to notice that 9801 = 992. Therefore, we may
express it as

10000

9801
=

(
100

99

)2

= (1.0101010101 . . . )2.

Now we use a trick that may be familiar to those who know the classical algorithm for
computing the square root of a number. That is, we take a decimal (a0.a1a2 . . . )2 and
expand it as (a0 + 10−1(a1.a2 . . . ))2 = (a2

0 + 0.2 × a0 × a1) + 10−2(a1.a2a3 . . . )2. Therefore,
we expand the fraction as follows.

(
100

99

)2

= (1 +
1

100
(1.01))2 = 1 + 2(0.01) +

1

10000
(1.01)2

= 1.02020202 . . . +
1

10000
(1.020202 . . . +

1

10000
(1.0202 . . . + · · · ))

= 1.0202 0202 0202 0202 . . .

+ 0.0001 0202 0202 0202 . . .

+ 0.0000 0001 0202 0202 . . .

+ 0.0000 0000 0001 0202 . . .

+ . . .

= 1.0203 0405 0607 0809 . . . .

After 49 steps we find the decimal expansion of 10000
9801

to be 1.0203 . . . 969798+

(0.0001)−49(1.01)2. The next step gives us

(
100

99

)2

= 1.02 . . . 9697 9898 9898 9898 . . .

+ 0.00 . . . 0000 0001 0202 0202 . . .

+ . . .

= 1.02 . . . 9697 9900 0101 0101 . . .

+ 0.00 . . . 0000 0000 0001 0202 . . .

+ . . .

= 1.02 . . . 9697 9900 0102 0304 . . . .
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Continuing this for another 49 steps, we find that(
100

99

)2

= 1.02 . . . 9697 9900 0102 . . . 9798 9999 9999 . . .

+ 0.00 . . . 0000 0000 0000 . . . 0000 0001 0202 . . .

+ . . .

= 1.02 . . . 9697 9900 0102 . . . 9799 0001 0202 . . .

+ . . .

That is, (
1.01

)2
= 1.02 . . . 969799000102 . . . 9799 +

(
1

10000

)−98

(1.01)2.

Therefore, the repeating part is 0203 . . . 97990001. In other words,(
100

99

)2

= 1.02 . . . 9697990001.

We note that this analysis can be made for all fractions of the type

Qn :=

(
10n

10n − 1

)2

= (1.0 . . . 0︸ ︷︷ ︸
n−1

1)2 = q2
n

= 1 + 2(10−nqn) + 10−2nq2
n. (2)

We summarize our findings in Theorem 1. For a non-negative integer i, let the n-padded
representation of i be the integer i written with sufficient leading zeros so that it has length n.
For example, the 3-padded representations of 0, 3, and 15 are 000, 003, and 015 respectively.

Theorem 1. Given a positive integer n, let ai denote the n-padded representation of the
non-negative integer i. Then the decimal expansion of Qn is

1.a2a3....a10n−3a10n−1a0a1.

We also have the following curious consequence.

Corollary. For a fixed positive integer n, the smallest positive t such that

10t − 1 ≡ 0 (mod (10n − 1)2)

is t = n(10n − 1). That is, the shortest string of 9s that is divisible by the square of a string
of n 9s has length n(10n − 1).

Proof. Note that P
10n−1

= 0.P ′, where P ′ is the n-padded representation of P . If 10t − 1 ≡
0 (mod b), then 10t − 1 = bm for some m. So

1

b
=

m

10t − 1
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and thus t must be a multiple of the minimum length of the repeating part of the decimal
expansion of 1/b. Therefore, the minimum t for which 10t − 1 ≡ 0 (mod (10n − 1)2) is the
minimum length of the repeating part of

(
10n

10n−1

)2. By Theorem 1, the minimum repeating
part is exactly the sequence {a2, a3, ..., a10n−3, a10n−1, a0, a1}. Since each term has length n,
and there are 10n − 1 terms, we conclude that t = n(10n − 1). �

To find out more about periodicity, period length, and other related topics, see Yates’
book [10].

Fractions of the Form
(

10n

10n − 1

)k

Another way to show that the fractions
(

10n

10n−1

)2 yield the sequence of integers in their
decimal expansions is to consider what happens when we multiply a number by

10n

10n − 1
= 1. 0...01︸ ︷︷ ︸

length n

.

Let x = 1.a2a3a4.... be the decimal expansion of some number, divided into blocks of length
n. That is, each ai is the n-padded representation of an integer (which we also call ai, for
simplicity) such that 0 ≤ ai < 10n. In other words, if we set a1 = 1, then

x =
∞∑
i=0

ai+110−in.

Consider the product

x
10n

10n − 1
=

(
∞∑
i=0

ai+110−in

)(
∞∑

j=0

10−jn

)

=
∞∑
i=0

∞∑
j=0

ai+110−(i+j)n.

Let k = i + j, so that

x
10n

10n − 1
=

∞∑
k=0

10−kn

k∑
i=0

ai+1

=
∞∑

k=0

(
k+1∑
i=1

ai

)
10−kn

=:
∞∑

k=0

bk10−kn.

Therefore, multiplying x by 10n

10n−1
produces a decimal expansion where the kth block of n

digits is equal to bk (which is 1 plus the sum of the first k blocks of n digits in the decimal
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expansion of x) unless bk has more than n digits. Suppose this overflow occurs at the Kth
block. Then the decimal formed by the remaining blocks have size

E :=
∞∑

k=K+1

(
K∑

i=1

ai +
k∑

i=K+1

ai

)
10−kn <

∞∑
k=K+1

(10n + (k −K))10n)10−kn

=
∞∑

k=K+1

(k − (K + 1) + 2)10−(k−(K+1))n−Kn = 10−Kn

∞∑
`=0

(` + 2)10−`n,

because ai < 10n for all i and
∑K

i=1 ai = bK−1 < 10n. Since ` + 2 < 10` for ` ≥ 1, we find
that

E < 10−Kn

(
2 +

∞∑
`=1

10−`(n−1)

)

= 10−Kn

(
2 +

10−(n−1)

1− 10−(n−1)

)
< 3× 10−Kn.

Therefore, any further carryover from the remaining blocks adds at most 3 to bK . Since
bK = bK−1 + aK+1 and both summands are less than 10n, we have bK < 2× 10n. Therefore,
there is at most a carryover of 2 to the (K − 1)st block, bK−1, and thus bK−1 + 2 < 10n + 1.
This means there may be a carry-over of 1 to the (K − 2)nd block, bK−2.

Note that the only way there can be further carryover affecting earlier blocks (bK−3, bK−4,
etc.) is if bK−2 = 10n − 1. But since 10n > bK−1 ≥ bK−2 ≥ bK−3 · · · , there is further
carryover only if bK−1 = bK−2. In other words, the carryover affects blocks beyond bK−2 only
if bK−1 = 10n − 1 and aK = 0.

Thus, the fraction ( 10n

10n−1
)2 begins with the sequence of positive integers, starting at 2,

with each integer occupying a block of length n, and up to at least 10n − 3 (that is, K = 99)
before the pattern will break down. If we multiply our fraction by 10n

10n−1
, we obtain blocks

of length n consisting of sums of the positive integers. As we have just seen, each time we
multiply by 10n

10n−1
, we get sums of the blocks of length n from the previous fraction. Clearly,

with each additional factor, the sequence breaks down earlier and earlier. However, for a
fixed number of factors, we can choose a large enough n so that the sequence breaks down
as late as we wish.

Now, all that’s left to do is to determine what exactly is the sequence we get from this
procedure. It turns out that these are the higher-dimensional pyramidal numbers. The
nth k-dimensional pyramidal number pk(n) is defined to be the sum of the first n (k − 1)-
dimensional pyramidal numbers, with the 0-dimensional pyramidal numbers defined as the
sequence consisting entirely of 1s. That is, for n ≥ 0,

pk(n) :=


n∑

j=1

pk−1(j), if k > 0,

1, if k = 0.
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Note that the 1-dimensional pyramidal numbers are the positive integers and the 2-
dimensional ones are the triangular numbers. The 3-dimensional pyramids with edge length
n are formed by stacking together triangles of edge length less than or equal to n. Spe-
cific values for these sequences can be found in Sloane and Plouffe’s Encyclopedia of Integer
Sequences [8]. One can easily verify, by double induction, that

pk(n) =

(
n + k − 1

k

)
. (3)

Now that we know what the sequences in the decimal expansions of these fractions are,
we can formulate our theorem.

Theorem 2. For fixed positive integers k and `, there exists an integer n for which the
decimal expansion of (

10n

10n − 1

)k

begins with
1.a2a3 . . . a`,

where a` is the n-padded representation of pk−1(`), provided that it has fewer than n digits.

Powers of n and the Fibonacci Sequence

As we stated earlier, Osler and the second author [9] used generating functions to show
that the fractions 102n

102n−10n−1
produced the Fibonacci sequence in their decimal expansions,

and Bicknell-Johnson [1] generalized these fractions to give sequences of the form (1). Using
this tool, we may just as easily find fractions that produce powers of n in their decimal
expansions.

Theorem 3. For any positive integers b and `, there exists an integer n for which the decimal
expansion of 10n

10n−b
begins with the n-padded representations of the first ` powers of b.

Proof. The generating function for the sequence of powers of b is

gb(x) =
∞∑

k=0

bkxk =
∞∑

k=0

(bx)k =
1

1− bx
,

and this converges for |x| < b.
For sufficiently large n, x = 10−n yields an expansion in blocks of size n. The last equality

shows that
gb(10−n) =

1

1− b10−n
=

10n

10n − b
.

�

We conclude with two curious observations about the remainders of these fractions when
we perform division.
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Theorem 4. If b is not a multiple of 10, then when 10n is divided by 10n − b in blocks of
size n, the remainder at step `, up to the b n+1

log10 b
cth step, is b`.

Proof. We know that

10n

10n − b
= 1.00 . . . b00 . . . b200 . . . b3 . . . = 1 +

b

10n − b
.

Now notice that

b`

10n − b
− b`

10n
=

b`(10n)− bk(10n − b)

(10n)(10n − b)
=

b`+1

(10n)(10n − b)
.

Therefore,

10n

10n − b
= 1 +

b

10n − b

= 1 +
b

10n
+

b2

10n(10n − b)

= 1 +
b

10n
+

b2

102n
+

b3

102n(10n − b)

= · · · .

Here the numerator of the last term is the remainder. This division works as long as b` has
no more than n digits. That is, until b` = 10n+1, or ` = b n+1

log10 b
c. �

There is a similar result for the Fibonacci fractions.

Theorem 5. When 102n is divided by 102n − 10n − 1 in blocks of size n, the remainder at
step ` is 10nF`+1 + F`, where F` is the `th Fibonacci number (with F0 = 0, F1 = F2 = 1).
This pattern holds as long as 10nF`+1 + F` < 102n.

Proof. Consider the difference

xi =
10nFi+1 + Fi

102n − 10n − 1
− Fi+1

10n
.

Simplifying, we obtain

xi =
10nFi + 10nFi+1 + Fi+1

(10n)(102n − 10n − 1)

=
10nFi+2 + Fi+1

(10n)(102n − 10n − 1)

=
Fi+2

102n
+

xi+1

10n
.
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Therefore, we find that

102n

102n − 10n − 1
= 10n 10nF1 + F0

102n − 10n − 1

= 10n

(
F1

10n
+ x0

)
= 10n

(
F1

10n
+

F2

102n
+

x1

10n

)
= · · ·

= 10n

(
F1

10n
+ · · ·+ F`

10`n
+

(
F`+1

10(`+1)n
+

x`

10`n

))
= F1 +

F2

10n
+ · · ·+ F`

10(`−1)n
+

10nF`+1 + F`

10(`−1)n(102n − 10n − 1)
.

Again, the numerator of the last fraction is the remainder at the `th step, and the pattern
holds as long as that number has length less than 2n. �

Example. The fraction

10000

9899
= 1.01 +

0201

100(9899)

= 1.0102 +
0302

104(9899)

= 1.010203 +
0503

106(9899)

= 1.010203050813 +
2113

1012(9899)
= · · · .

Exercises

1. Let k be a non-zero digit, and let a0 = a1 = 1, an = an−1 + kan−2 for n ≥ 2. Show

that if f(x) is the generating function of {an}∞n=0. (That is, if f(x) =
∞∑

n=0

anx
n, then

f(x) =
1

1− x− kx2
.)

2. Find the designer decimals that correspond to each of the sequences in Exercise 1, and
show that the difference between the numerator and denominator is 10...0k.

3. Are there any special sequences that correspond to other numerator-denominator dif-
ferences? How do the numerator-denominator differences change when we use different
values for a0 and a1?
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4. Euler [3, p.44] computed the sum of the reciprocals of the first N k-dimensional pyra-
midal numbers. Use the identity

1

n(n + k − 1)
=

1

k − 1

(
1

n
− 1

n + k − 1

)
to show that the sum

N∑
n=1

1

pk(n)

is telescoping for each k ≥ 2, and evaluate it in closed form.
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