
MATH 3070
Assignment # 5 Solutions

Due Thursday, October 30, 2008

1. (a) We first try if 2 is a primitive root mod 23. We calculate

k 1 2 3 4 5 6 7 8 9 10 11
2k (mod 23) 2 4 8 −7 9 −5 −10 3 6 −11 1

so 2 is not a primitive root, nor is any number in the above table. So we skip ahead to
try 5 and find that 52 ≡ 2 (mod 23) so 5 must be a primitive root (as the order of 2 is 11
which is ϕ(23)/2, so its square root must have order 22). Indeed, we find that

k 1 2 3 4 5 6 7 8 9 10 11
5k (mod 23) 5 2 10 4 −3 8 −6 −7 11 9 −1

k 12 13 14 15 16 17 18 19 20 21 22
5k (mod 23) −5 −2 −10 −4 3 −8 6 7 −11 −9 1

The indices that are coprime to ϕ(23) = 22 are the ones that generate the primitive
roots. So the set of primitive roots mod 23 is {5, 10,−3,−6, 11,−2,−4,−8, 7,−9}, or
equivalently {5, 7, 10, 11, 14, 15, 17, 19, 20, 21}.

(b) Since 5 does not divide ϕ(23) = 22 there are no elements of order 5. To obtain the
elements of order 11 we square the primitive roots and find that the list becomes
{2, 4, 8,−7, 9,−10, 3, 6}. (A shortcut, of course, is to look at the table for powers of
2 ≡ 52 with the powers coprime to 22. Noting that 11 is odd, we find that the numbers
we skipped over in the first half of the list gets counted in the second half of the list,
so the set is the entire list from k = 1 to 10 in the first table.) The only elements not
counted are 1 and −1, and only −1 has order 2.

2. (a) Let d = gcd(k, `), and set x = ordmn(a). Since ax ≡ 1 (modmn), we must have ax ≡
1 (modm) and ax ≡ 1 (modn). Therefore k | x and ` | x. Thus x is a common multiple
of k and ` and so lcm(k, `) | x.

Conversely, alcm(k,`) = (ak)`/d = (a`)k/d. The first is clearly 1 (modm) and the second
is clearly 1 (modn). So if (m, n) = 1 then by the Chinese Remainder Theorem we have
alcm(k,`) ≡ 1 (modmn). Therefore x | lcm(k, `). Since both of these numbers are positive,
we may conclude they are equal.

(b) We know that k ≤ ϕ(m) and ` ≤ ϕ(n). If we want a to be a primitive root, we must have
ordmn(a) = ϕ(mn) = ϕ(m)ϕ(n) = k`/d. Thus we must have k = ϕ(m) and ` = ϕ(n)
and d = 1. But we know for any x > 2, ϕ(x) is even. So the only way d = 1 is if one of
m or n is 2.

(c) Let x = ordpk+1(a). Then ax ≡ 1 (mod pk+1). Therefore ax ≡ 1 (mod pk).
So ϕ(pk) = ordpk(a) | x.



(d) By part (c), we know that ordp2(a) is a multiple of ϕ(p) = p−1. Thus (p−1) ordp2(ap−1) =
ordp2(a). Now, we know ordp2(a) | ϕ(p2) = p(p− 1). Cancelling the p− 1 on both sides
yields ordp2(ap−1) | p. So either ordp2(ap−1) = 1 or it is p, in which case ordp2(a) =
p(p− 1) and a is a primitive root mod p2.

(e) If ap−1 ≡ 1 (mod p2),
then (a + p)p−1 = ap−1 + ap−2p(p− 1) + higher powers of p ≡ ap−1 − ap−2p (mod p2).
Now, since (a, p) = 1, ap−2 6≡ 0 (mod p) and so ap−2p 6≡ 0 (mod p2).
Therefore, (a + p)p−1 ≡ 1 − ap−2p 6≡ 1 (mod p2). But a + p is a primitive root mod p
since a is. So by part (d), a + p must be a primitive root (mod p2).

(f) We induct on k, the base case being k = 2, which is trivial. Now suppose for fixed k > 2,
if a is a primitive root mod p2 then a is a primitive root mod p` for all 2 ≤ ` < k. We
want to show that a is a primitive root mod pk.

Using part (c), we know that ordpk(a) is a multiple of ϕ(pk−1) = pk−2(p− 1). Following
the same argument as part (d), we find that either apk−2(p−1) ≡ 1 (mod pk) or a is a
primitive root mod pk. We show that the first case is impossible.

Suppose not. Then apk−2(p−1) − 1 ≡ 0 (mod pk). Factor the left side to find that

(apk−3(p−1) − 1)(apk−3(p−1)(p−1) + apk−3(p−1)(p−2) + · · ·+ apk−3(p−1) + 1) ≡ 0 (mod pk).

But a is a primitive root mod pk−1, so apk−3(p−1) 6≡ 1 (mod pk−1), so there can be at most
k− 2 factors of p in the first factor, and thus there must be at least 2 factors of p in the
second. That is,

apk−3(p−1)(p−1) + · · ·+ apk−3(p−1) + 1 ≡ 0 (mod p2).

Now, each of the apk−3(p−1)i ≡ 1 (mod pk−2). Denote the above sum by S. We need
to break this up into two cases. If k ≥ 4, then we may replace each of the apk−3(p−1)i

by 1 + cip
2, since it is congruent to 1 mod pk−2, with k − 2 ≥ 2. Therefore, S =

(1 + cp−1p
2) + · · ·+ (1 + c1p

2) + 1 ≡ p (mod p2) 6≡ 0 (mod p2), a contradiction.

If k = 3, then S = 1 + ap−1 + · · · + (ap−1)p−1. But a is a primitive root (mod p2) so
a(p−1)i 6≡ 1 (mod p2) for any 1 ≤ i < p. But by Fermat’s little Theorem it is congruent
to 1 mod p. So we may write a(p−1)i = 1 + cip where (ci, p) = 1. But as a is a primitive
root (mod p2), we know the a(p−1)i are pairwise incongruent mod p2, and thus the ci are
incongruent mod p. Since we have p−1 of them, they are all the non-zero residue classes
mod p and so c1 + · · · + cp−1 ≡ 1 + 2 + · · · + (p − 1) (mod p) ≡ 0 (mod p) if p is odd.
Therefore, S = p + p(c1 + c2 + · · ·+ cp−1) ≡ p (mod p2), again a contradiction.

(Note that this fails in the case where p = 2 and k = 3, as the sum of the ci is odd, which
avoids the contradiction.)

(g) By parts (c)–(f), for every odd prime p and every positive integer k we can find a primitive
root a mod pk. Now, 1 is a primitive root mod 2. So if a is odd, then by part (a) we
have ord2pk(a) = ord2(a) ordpk(a) = 1 · ϕ(pk) = ϕ(2pk). If a is even, then a + pk is odd
and is also a primitive root mod pk. So by the same argument a + pk is a primitive root
mod 2pk.



3. (a) Using indices base 5 and the table we calculated above, we find that

I(4x4) = I(4) + 4I(x) ≡ 4 + 4I(x) ≡ I(9) ≡ 10 (mod 22).

We easily find that 4I(x) ≡ 6 (mod 22) so 2I(x) ≡ 3 (mod 11), and I(x) ≡ 7 (mod 11).
Thus x ≡ 57, 518 (mod 23), so x ≡ −6,−10 (mod 23).

(b) Since 76 = 4 · 19, we apply the Chinese Remainder Theorem and solve the system

x10 ≡ 1 (mod 4)

x10 ≡ 7 (mod 19)

We can solve the first by inspection, x ≡ ±1 (mod 4) (or equivalently x is odd, so x ≡
1 (mod 2)).
To solve the second, We use indices base 2 (so we can be lazy and use the table constructed
in class) to find that

10I(x) ≡ I(7) ≡ 6 (mod 18).

Thus 5I(x) ≡ 3 (mod 9), so that I(x) ≡ 6 (mod 9). This yields x ≡ 26, 215 (mod 19) ≡
7, 12 (mod 19). Combining these solutions with the mod 4 solution, we find that the
solutions are x ≡ 7, 31 (mod 38), or equivalently x ≡ 7, 31, 45, 69 (mod 76).


