MATH 3070
Assignment # 4 Solutions
Due Thursday, October 23, 2008

1. Solution 1:
Let n = pi* - - - p* be the unique factorization of n.
Then ¢(n) = pi”*l - -pZ’“fl(pl — 1) (px — 1) = 12 = 223, where py, is the largest prime
divisor of n. Then since pr — 1 must divide ¢(n) = 12, the possibilities for py — 1 are

12,6,4,3,2,1.

If pp — 1 = 12, then pr = 13 and so ar = 1. All the other p; — 1 factors must be 1 and so
k=1or k=2 with p; =2, a; = 1. This corresponds to n = 13, 26.

If p —1 =6, Then pr, = 7 and so ar = 1 in this case as well, as 7 |/12. We only have a factor
of 2 in the remaining parts of ¢(n). Since 5 —1 =4 > 2 we cannot have p; = 5 for any i. So
the only possibilities are p; = 2 or 3. If there is a factor p; = 3 then we must have a; = 1, and
as before we may insert p; = 2. So we find n = 21,42. If p; # 3 for any i then we must have
k = 2 and p; = 2, which forces a1 = 2 and so n = 28.

If pp — 1 =4 then py = 5 and a; = 1. But then 3 must divide the remaining factors. Since
p; < 3foralli <k, p; —1 is coprime to 3, so we must have a p; = 3, which introduces another
factor of 2 from p; — 1. This means there is a factor of 8 in ¢(n), a contradiction.

pr — 1 = 3 is impossible, since 4 is not a prime.

If pp — 1 = 2, then pp = 3, so ap = 2 by the same reasoning as above to obtain the factor of
3 in ¢(n). This contributes a factor of 6 in p(n). So k = 2 and p; = 2, with 2 = 29171 50
a1 = 2. This corresponds to n = 2232 = 36.

Finally, if p, — 1 = 1 then & = 1 and p; = 2 which means n = 2% so p(n) = 297! is never
12. Thus the entire solution set for n is {13, 26,21, 42, 28,36}.

Solution 2:

Let n = p{* - -pzklbe the ulnique factorization of n.

Then @(n) = p' - pptH(p1 — 1) -+ (pr — 1) = 12 = 223,

Since the p; — 1 are increasing, and 12 =1-2-2-3, 12 cannot be the product of more than 3
distinct numbers. Thus k£ < 3. Now let’s look at the various cases and possibilities.

If k=1, then 12 = p‘l“_l(pl — 1) so either p; = 2,p; =3, or a; = 1 so n = p;. The first two
cases are impossible as p(2") = 2"~! =£ 12 for any n, and ¢(3") = 3"~ .2 # 12 for any n. In
the last case, we have p; — 1 =12 so n = p; = 13 works.

If £ = 2, then 12 = p{* 'p22  (p; — 1)(p2 — 1). If neither of the a; are 1, then this forces
p1 =2 and ps = 3 s0 12 = 211713%271(1)(2), so that a; — 1 = ap — 1 = 1 and n = 2232 = 36.

If ap =1 and ag > 1 then since py > p; > 2, we must have ps = 3 and so as = 2. This yields
12=3B3—-1)(p1 — 1) =6(p1 — 1) so p1 —1 =2 and p; = 3, a contradiction. If ay = 1 and
a1 > 1 then we have two cases: p; = 2 or p; = 3. In the first case, we find that either a; = 2
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4.
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or a; = 3, giving 12 = 2(p2 — 1) or 12 = 4(py — 1) The first case yields ps = 7 and the second
case is impossible. So we have the solution n = 28. If p; = 3 then we must have a; = 2 so
12 =3(2)(p2 — 1), so po — 1 = 2 and ps = 3 is a contradiction.

Finally, if a1 = ap = 1 then n = (p1 — 1)(p2 — 1), giving the possible (p1 — 1,p2 — 1) pairs as
(1,12),(2,6), and (3,4). Only the first two yields solutions n = 26 and n = 21.

If k = 3, first note that ps > pa > p1 > 2 s0 ps > 5 and pa > 3. Therefore (p1 —1)(p2—1)(p3 —
1) > 4-2-1= 8. But that product must be a factor of 12, and the only factor of 12 greater
than 8 is 12 itself. Therefore 12 = (p; —1)(p2 —1)(p3 — 1) and we must have a; = ay = ag = 1.
The possible triples (p;1 — 1,p2 — 1,p3 — 1) are (1,2,6) and (1,3,4). Only the first one yields
a solution, and it isn=2-3-7 = 42.

Thus, the list of all n such that p(n) = 12 is {13, 21, 26, 28, 36,42}

We simply need to multiply n by primes that are one more than a power of two. In particular,
for k > 2 we have ¢(3 - 2’“) = (5 - 2k_1) = ok,

. Obviously 25! = 0 (mod 23). Now 18! = 22!(2271)(2171)(2071)(197 1) = 22![(—1)(-2)(-3)(-4)] ' =

22!1(24)~! (mod 23). But 24 =1 (mod 23) so 22! = 18! (mod 23). Now apply Wilson’s The-
orem and we find that 18! + 25! = 22! = —1 (mod 23). So the remainder is 22.

(a) If 4n? + 1 is divisible by some prime p = 3 (mod 4), then 4n? = —1 (mod p). Thus —1
would be a quadratic residue mod p. But —1 is a quadratic residue if and only if p =1
(mod 4). So 4n? + 1 can never have a prime factor congruent to 3 (mod 4).

(b) Suppose not. Let p; < pa < -+ < pg be the list of all primes congruent to 1 (mod 4).
Let N = 4(p1p2---pi)? + 1. This is odd and obviously greater than p,. Thus it must
be composite. But N is coprime to all the primes congruent to 1 (mod 4). Thus all of
its prime factors must be congruent to 3 (mod 4) (since 2 does not divide N). But this
contradicts part a.

(a) Since half of the a are quadratic residues and the other half are non-residues, we have
the same number of +1 and —1 in the sum. So it evaluates to zero.

(b) Since the Legendre symbol is completely multiplicative, the expression is

T (5)-(52)- () -], oy b

. If a = 2% (mod p) has a solution, then (z71)%a = (71?22 = 1 (mod p) so (z71)%2 = a7}

(mod p). Therefore a is a quadratic residue implies a=! is also. The converse follows from
switching a with ™! in the above argument.

If p = 2, then both 3 and 5 are quadratic residues mod p. Now suppose p is an odd prime.
By quadratic reciprocity, we have

<2) S i (ALY (4



Now, 1 is the only quadratic residue mod 3 and (—1)®~Y/2 = 1 if and only if p = 1 (mod 4).
So we have
<3> _J1 ifp=+£1 (mod 12),
p) |-1 ifp=45 (mod 12).
Similarly, we find that
<5) _ (71)2@_1)/2 (]2) _ <]2) _ 1 ifp=+1 (mod 5),
P 5 5 -1 ifp=+42 (mod 5),

since p is an odd prime so (—1)P~! = 1 always. In fact, since p is odd, we can conclude that
(5) _J1 ifp=41 (mod 10),
p) |-1 ifp=+3 (mod 10).

8. We may rewrite the sum as S := 12+ (271)2 + ... + ((p — 1)71)%. Now, since we are summing
over the inverses of all invertible residue classes mod p, this is just a rearrangement of a sum
over all invertible residue classes mod p. Thus

(p+1)(2p+1)
6

5512+22+---—|—(p—1)25p (mod p).

Now since p > 3 is a prime, ged(6,p) = 1 so the p does not cancel, and the evaluation must
be 0 (mod p).



