
MATH 3070
Assignment # 4 Solutions

Due Thursday, October 23, 2008

1. Solution 1:
Let n = pa1

1 · · · p
ak
k be the unique factorization of n.

Then ϕ(n) = pa1−1
1 · · · pak−1

k (p1 − 1) · · · (pk − 1) = 12 = 223, where pk is the largest prime
divisor of n. Then since pk − 1 must divide ϕ(n) = 12, the possibilities for pk − 1 are
12, 6, 4, 3, 2, 1.

If pk − 1 = 12, then pk = 13 and so ak = 1. All the other pi − 1 factors must be 1 and so
k = 1 or k = 2 with p1 = 2, a1 = 1. This corresponds to n = 13, 26.

If pk − 1 = 6, Then pk = 7 and so ak = 1 in this case as well, as 7 6| 12. We only have a factor
of 2 in the remaining parts of ϕ(n). Since 5− 1 = 4 > 2 we cannot have pi = 5 for any i. So
the only possibilities are pi = 2 or 3. If there is a factor pi = 3 then we must have ai = 1, and
as before we may insert p1 = 2. So we find n = 21, 42. If pi 6= 3 for any i then we must have
k = 2 and p1 = 2, which forces a1 = 2 and so n = 28.

If pk − 1 = 4 then pk = 5 and ak = 1. But then 3 must divide the remaining factors. Since
pi ≤ 3 for all i < k, pi−1 is coprime to 3, so we must have a pi = 3, which introduces another
factor of 2 from pi − 1. This means there is a factor of 8 in ϕ(n), a contradiction.

pk − 1 = 3 is impossible, since 4 is not a prime.

If pk − 1 = 2, then pk = 3, so ak = 2 by the same reasoning as above to obtain the factor of
3 in ϕ(n). This contributes a factor of 6 in ϕ(n). So k = 2 and p1 = 2, with 2 = 2a1−1 so
a1 = 2. This corresponds to n = 2232 = 36.

Finally, if pk − 1 = 1 then k = 1 and p1 = 2 which means n = 2a1 so ϕ(n) = 2a1−1 is never
12. Thus the entire solution set for n is {13, 26, 21, 42, 28, 36}.

Solution 2:
Let n = pa1

1 · · · p
ak
k be the unique factorization of n.

Then ϕ(n) = pa1−1
1 · · · pak−1

k (p1 − 1) · · · (pk − 1) = 12 = 223.
Since the pi − 1 are increasing, and 12 = 1 · 2 · 2 · 3, 12 cannot be the product of more than 3
distinct numbers. Thus k ≤ 3. Now let’s look at the various cases and possibilities.

If k = 1, then 12 = pa1−1
1 (p1 − 1) so either p1 = 2, p1 = 3, or a1 = 1 so n = p1. The first two

cases are impossible as ϕ(2n) = 2n−1 6= 12 for any n, and ϕ(3n) = 3n−1 · 2 6= 12 for any n. In
the last case, we have p1 − 1 = 12 so n = p1 = 13 works.

If k = 2, then 12 = pa1−1
1 pa2−1

2 (p1 − 1)(p2 − 1). If neither of the ai are 1, then this forces
p1 = 2 and p2 = 3 so 12 = 2a1−13a2−1(1)(2), so that a1 − 1 = a2 − 1 = 1 and n = 2232 = 36.

If a1 = 1 and a2 > 1 then since p2 > p1 ≥ 2, we must have p2 = 3 and so a2 = 2. This yields
12 = 3(3 − 1)(p1 − 1) = 6(p1 − 1) so p1 − 1 = 2 and p1 = 3, a contradiction. If a2 = 1 and
a1 > 1 then we have two cases: p1 = 2 or p1 = 3. In the first case, we find that either a1 = 2



or a1 = 3, giving 12 = 2(p2 − 1) or 12 = 4(p2 − 1) The first case yields p2 = 7 and the second
case is impossible. So we have the solution n = 28. If p1 = 3 then we must have a1 = 2 so
12 = 3(2)(p2 − 1), so p2 − 1 = 2 and p2 = 3 is a contradiction.

Finally, if a1 = a2 = 1 then n = (p1 − 1)(p2 − 1), giving the possible (p1 − 1, p2 − 1) pairs as
(1, 12), (2, 6), and (3, 4). Only the first two yields solutions n = 26 and n = 21.

If k = 3, first note that p3 > p2 > p1 ≥ 2 so p3 ≥ 5 and p2 ≥ 3. Therefore (p1−1)(p2−1)(p3−
1) ≥ 4 · 2 · 1 = 8. But that product must be a factor of 12, and the only factor of 12 greater
than 8 is 12 itself. Therefore 12 = (p1−1)(p2−1)(p3−1) and we must have a1 = a2 = a3 = 1.
The possible triples (p1 − 1, p2 − 1, p3 − 1) are (1, 2, 6) and (1, 3, 4). Only the first one yields
a solution, and it is n = 2 · 3 · 7 = 42.

Thus, the list of all n such that ϕ(n) = 12 is {13, 21, 26, 28, 36, 42}

2. We simply need to multiply n by primes that are one more than a power of two. In particular,
for k ≥ 2 we have ϕ(3 · 2k) = ϕ(5 · 2k−1) = 2k.

3. Obviously 25! ≡ 0 (mod 23). Now 18! = 22!(22−1)(21−1)(20−1)(19−1) ≡ 22![(−1)(−2)(−3)(−4)]−1 ≡
22!(24)−1 (mod 23). But 24 ≡ 1 (mod 23) so 22! ≡ 18! (mod 23). Now apply Wilson’s The-
orem and we find that 18! + 25! ≡ 22! ≡ −1 (mod 23). So the remainder is 22.

4. (a) If 4n2 + 1 is divisible by some prime p ≡ 3 (mod 4), then 4n2 ≡ −1 (mod p). Thus −1
would be a quadratic residue mod p. But −1 is a quadratic residue if and only if p ≡ 1
(mod 4). So 4n2 + 1 can never have a prime factor congruent to 3 (mod 4).

(b) Suppose not. Let p1 < p2 < · · · < pk be the list of all primes congruent to 1 (mod 4).
Let N = 4(p1p2 · · · pk)2 + 1. This is odd and obviously greater than pk. Thus it must
be composite. But N is coprime to all the primes congruent to 1 (mod 4). Thus all of
its prime factors must be congruent to 3 (mod 4) (since 2 does not divide N). But this
contradicts part a.

5. (a) Since half of the a are quadratic residues and the other half are non-residues, we have
the same number of +1 and −1 in the sum. So it evaluates to zero.

(b) Since the Legendre symbol is completely multiplicative, the expression is

p−1∏
k=1

(
k

p

)
=
(

(p− 1)!
p

)
=
(
−1
p

)
=

{
1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).

6. If a ≡ x2 (mod p) has a solution, then (x−1)2a ≡ (x−1)2x2 ≡ 1 (mod p) so (x−1)2 ≡ a−1

(mod p). Therefore a is a quadratic residue implies a−1 is also. The converse follows from
switching a with a−1 in the above argument.

7. If p = 2, then both 3 and 5 are quadratic residues mod p. Now suppose p is an odd prime.
By quadratic reciprocity, we have(

3
p

)
= (−1)1(p−1)/2

(p

3

)
= (−1)(p−1)/2

(p

3

)
.



Now, 1 is the only quadratic residue mod 3 and (−1)(p−1)/2 = 1 if and only if p ≡ 1 (mod 4).
So we have (

3
p

)
=

{
1 if p ≡ ±1 (mod 12),
−1 if p ≡ ±5 (mod 12).

Similarly, we find that(
5
p

)
= (−1)2(p−1)/2

(p

5

)
=
(p

5

)
=

{
1 if p ≡ ±1 (mod 5),
−1 if p ≡ ±2 (mod 5),

since p is an odd prime so (−1)p−1 = 1 always. In fact, since p is odd, we can conclude that(
5
p

)
=

{
1 if p ≡ ±1 (mod 10),
−1 if p ≡ ±3 (mod 10).

8. We may rewrite the sum as S := 12 + (2−1)2 + · · ·+ ((p− 1)−1)2. Now, since we are summing
over the inverses of all invertible residue classes mod p, this is just a rearrangement of a sum
over all invertible residue classes mod p. Thus

S ≡ 12 + 22 + · · ·+ (p− 1)2 ≡ p(p + 1)(2p + 1)
6

(mod p).

Now since p > 3 is a prime, gcd(6, p) = 1 so the p does not cancel, and the evaluation must
be 0 (mod p).


