MATH 3070 Assignment # 4 Solutions Due Thursday, October 23, 2008

1. <u>Solution 1:</u>

Let $n = p_1^{a_1} \cdots p_k^{a_k}$ be the unique factorization of n. Then $\varphi(n) = p_1^{a_1-1} \cdots p_k^{a_k-1}(p_1-1) \cdots (p_k-1) = 12 = 2^23$, where p_k is the largest prime divisor of n. Then since $p_k - 1$ must divide $\varphi(n) = 12$, the possibilities for $p_k - 1$ are 12, 6, 4, 3, 2, 1.

If $p_k - 1 = 12$, then $p_k = 13$ and so $a_k = 1$. All the other $p_i - 1$ factors must be 1 and so k = 1 or k = 2 with $p_1 = 2$, $a_1 = 1$. This corresponds to n = 13, 26.

If $p_k - 1 = 6$, Then $p_k = 7$ and so $a_k = 1$ in this case as well, as 7 |/12. We only have a factor of 2 in the remaining parts of $\varphi(n)$. Since 5 - 1 = 4 > 2 we cannot have $p_i = 5$ for any *i*. So the only possibilities are $p_i = 2$ or 3. If there is a factor $p_i = 3$ then we must have $a_i = 1$, and as before we may insert $p_1 = 2$. So we find n = 21, 42. If $p_i \neq 3$ for any *i* then we must have k = 2 and $p_1 = 2$, which forces $a_1 = 2$ and so n = 28.

If $p_k - 1 = 4$ then $p_k = 5$ and $a_k = 1$. But then 3 must divide the remaining factors. Since $p_i \leq 3$ for all $i < k, p_i - 1$ is coprime to 3, so we must have a $p_i = 3$, which introduces another factor of 2 from $p_i - 1$. This means there is a factor of 8 in $\varphi(n)$, a contradiction.

 $p_k - 1 = 3$ is impossible, since 4 is not a prime.

If $p_k - 1 = 2$, then $p_k = 3$, so $a_k = 2$ by the same reasoning as above to obtain the factor of 3 in $\varphi(n)$. This contributes a factor of 6 in $\varphi(n)$. So k = 2 and $p_1 = 2$, with $2 = 2^{a_1-1}$ so $a_1 = 2$. This corresponds to $n = 2^2 3^2 = 36$.

Finally, if $p_k - 1 = 1$ then k = 1 and $p_1 = 2$ which means $n = 2^{a_1}$ so $\varphi(n) = 2^{a_1-1}$ is never 12. Thus the entire solution set for n is $\{13, 26, 21, 42, 28, 36\}$.

Solution 2: Let $n = p_1^{a_1} \cdots p_k^{a_k}$ be the unique factorization of n. Then $\varphi(n) = p_1^{a_1-1} \cdots p_k^{a_k-1}(p_1-1) \cdots (p_k-1) = 12 = 2^2 3$. Since the $p_i - 1$ are increasing, and $12 = 1 \cdot 2 \cdot 2 \cdot 3$, 12 cannot be the product of more than 3 distinct numbers. Thus $k \leq 3$. Now let's look at the various cases and possibilities.

If k = 1, then $12 = p_1^{a_1-1}(p_1-1)$ so either $p_1 = 2, p_1 = 3$, or $a_1 = 1$ so $n = p_1$. The first two cases are impossible as $\varphi(2^n) = 2^{n-1} \neq 12$ for any n, and $\varphi(3^n) = 3^{n-1} \cdot 2 \neq 12$ for any n. In the last case, we have $p_1 - 1 = 12$ so $n = p_1 = 13$ works.

If k = 2, then $12 = p_1^{a_1-1}p_2^{a_2-1}(p_1-1)(p_2-1)$. If neither of the a_i are 1, then this forces $p_1 = 2$ and $p_2 = 3$ so $12 = 2^{a_1-1}3^{a_2-1}(1)(2)$, so that $a_1 - 1 = a_2 - 1 = 1$ and $n = 2^23^2 = 36$.

If $a_1 = 1$ and $a_2 > 1$ then since $p_2 > p_1 \ge 2$, we must have $p_2 = 3$ and so $a_2 = 2$. This yields $12 = 3(3-1)(p_1-1) = 6(p_1-1)$ so $p_1 - 1 = 2$ and $p_1 = 3$, a contradiction. If $a_2 = 1$ and $a_1 > 1$ then we have two cases: $p_1 = 2$ or $p_1 = 3$. In the first case, we find that either $a_1 = 2$

or $a_1 = 3$, giving $12 = 2(p_2 - 1)$ or $12 = 4(p_2 - 1)$ The first case yields $p_2 = 7$ and the second case is impossible. So we have the solution n = 28. If $p_1 = 3$ then we must have $a_1 = 2$ so $12 = 3(2)(p_2 - 1)$, so $p_2 - 1 = 2$ and $p_2 = 3$ is a contradiction.

Finally, if $a_1 = a_2 = 1$ then $n = (p_1 - 1)(p_2 - 1)$, giving the possible $(p_1 - 1, p_2 - 1)$ pairs as (1, 12), (2, 6), and (3, 4). Only the first two yields solutions n = 26 and n = 21.

If k = 3, first note that $p_3 > p_2 > p_1 \ge 2$ so $p_3 \ge 5$ and $p_2 \ge 3$. Therefore $(p_1 - 1)(p_2 - 1)(p_3 - 1) \ge 4 \cdot 2 \cdot 1 = 8$. But that product must be a factor of 12, and the only factor of 12 greater than 8 is 12 itself. Therefore $12 = (p_1 - 1)(p_2 - 1)(p_3 - 1)$ and we must have $a_1 = a_2 = a_3 = 1$. The possible triples $(p_1 - 1, p_2 - 1, p_3 - 1)$ are (1, 2, 6) and (1, 3, 4). Only the first one yields a solution, and it is $n = 2 \cdot 3 \cdot 7 = 42$.

Thus, the list of all n such that $\varphi(n) = 12$ is $\{13, 21, 26, 28, 36, 42\}$

- 2. We simply need to multiply n by primes that are one more than a power of two. In particular, for $k \ge 2$ we have $\varphi(3 \cdot 2^k) = \varphi(5 \cdot 2^{k-1}) = 2^k$.
- 3. Obviously $25! \equiv 0 \pmod{23}$. Now $18! = 22!(22^{-1})(21^{-1})(20^{-1})(19^{-1}) \equiv 22![(-1)(-2)(-3)(-4)]^{-1} \equiv 22!(24)^{-1} \pmod{23}$. But $24 \equiv 1 \pmod{23}$ so $22! \equiv 18! \pmod{23}$. Now apply Wilson's Theorem and we find that $18! + 25! \equiv 22! \equiv -1 \pmod{23}$. So the remainder is 22.
- 4. (a) If 4n² + 1 is divisible by some prime p ≡ 3 (mod 4), then 4n² ≡ -1 (mod p). Thus -1 would be a quadratic residue mod p. But -1 is a quadratic residue if and only if p ≡ 1 (mod 4). So 4n² + 1 can never have a prime factor congruent to 3 (mod 4).
 - (b) Suppose not. Let $p_1 < p_2 < \cdots < p_k$ be the list of all primes congruent to 1 (mod 4). Let $N = 4(p_1p_2\cdots p_k)^2 + 1$. This is odd and obviously greater than p_k . Thus it must be composite. But N is coprime to all the primes congruent to 1 (mod 4). Thus all of its prime factors must be congruent to 3 (mod 4) (since 2 does not divide N). But this contradicts part a.
- 5. (a) Since half of the *a* are quadratic residues and the other half are non-residues, we have the same number of +1 and -1 in the sum. So it evaluates to zero.
 - (b) Since the Legendre symbol is completely multiplicative, the expression is

$$\prod_{k=1}^{p-1} \left(\frac{k}{p}\right) = \left(\frac{(p-1)!}{p}\right) = \left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4}, \\ -1 & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

- 6. If $a \equiv x^2 \pmod{p}$ has a solution, then $(x^{-1})^2 a \equiv (x^{-1})^2 x^2 \equiv 1 \pmod{p}$ so $(x^{-1})^2 \equiv a^{-1} \pmod{p}$. Therefore *a* is a quadratic residue implies a^{-1} is also. The converse follows from switching *a* with a^{-1} in the above argument.
- 7. If p = 2, then both 3 and 5 are quadratic residues mod p. Now suppose p is an odd prime. By quadratic reciprocity, we have

$$\left(\frac{3}{p}\right) = (-1)^{1(p-1)/2} \left(\frac{p}{3}\right) = (-1)^{(p-1)/2} \left(\frac{p}{3}\right)$$

Now, 1 is the only quadratic residue mod 3 and $(-1)^{(p-1)/2} = 1$ if and only if $p \equiv 1 \pmod{4}$. So we have

$$\begin{pmatrix} \frac{3}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{12}, \\ -1 & \text{if } p \equiv \pm 5 \pmod{12}. \end{cases}$$

Similarly, we find that

$$\left(\frac{5}{p}\right) = (-1)^{2(p-1)/2} \left(\frac{p}{5}\right) = \left(\frac{p}{5}\right) = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{5}, \\ -1 & \text{if } p \equiv \pm 2 \pmod{5}, \end{cases}$$

since p is an odd prime so $(-1)^{p-1} = 1$ always. In fact, since p is odd, we can conclude that

$$\begin{pmatrix} \frac{5}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{10}, \\ -1 & \text{if } p \equiv \pm 3 \pmod{10}. \end{cases}$$

8. We may rewrite the sum as $S := 1^2 + (2^{-1})^2 + \dots + ((p-1)^{-1})^2$. Now, since we are summing over the inverses of all invertible residue classes mod p, this is just a rearrangement of a sum over all invertible residue classes mod p. Thus

$$S \equiv 1^2 + 2^2 + \dots + (p-1)^2 \equiv \frac{p(p+1)(2p+1)}{6} \pmod{p}.$$

Now since p > 3 is a prime, gcd(6, p) = 1 so the p does not cancel, and the evaluation must be 0 (mod p).