MATH 3070 Assignment # 3 Due Thursday, October 2, 2008

1. For any $m \in \mathbb{N}$, prove that the set of invertible elements mod m is closed under multiplication. That is, the product of any pair of invertible elements is also invertible.

This, combined with the fact that 1 is invertible and inverses are invertible, makes the set of invertible elements mod m a group. This set of elements is usually denoted \mathbb{Z}_m^* , the multiplicative group mod m.

- 2. Prove that the congruence $x^2 \equiv 244714 \pmod{1256636}$ has no solutions.
- 3. Let (a, m) = 1. Prove that the set $\{ax \pmod{m} : 0 \le x \le m-1\}$ is a complete residue system mod m. Thus multiplying by an integer relatively prime to the modulus simply rearranges the residues mod m.
- 4. Solve the following systems of congruences or prove that there is no solution.
 - (a) $3x \equiv 4 \pmod{7}$, $5x \equiv 3 \pmod{8}$, $12x \equiv 17 \pmod{29}$.
 - (b) $5x \equiv 3 \pmod{12}$, $3x \equiv 7 \pmod{8}$, $x \equiv 12 \pmod{25}$.
- 5. Solving quadratics mod m.
 - (a) Give an example to show that it is possible for $x^2 \equiv a \pmod{m}$ to have more than two solutions mod m.
 - (b) Prove that in the case $m = p^2$, where p is an odd prime, the maximum number of solutions is still two unless $a \equiv 0 \pmod{p^2}$.
 - (c) Prove that the maximum number of solutions is four when $m = p_1 p_2$, a product of two distinct primes.
- 6. Prove that for all $n \in \mathbb{Z}$ the polynomial $n^{35} 4n^{24} + 5n^{16} + 21n^8 n^3 + 2$ is never divisible by 17.
- 7. Prove the converse of Wilson's Theorem: if n is composite then $(n-1)! \not\equiv -1 \pmod{n}$. In fact, prove the stronger statement that $(n-1)! \equiv 0 \pmod{n}$ for n > 4 and composite.